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SUMMARY

The geometry of arterial conduits derived from in vivo image data is subject to acquisition and reconstruc-
tion errors. This results in a degree of uncertainty in defining the bounding geometry for a patient-specific
anatomical conduit. In applying computational fluid dynamics to model the flow in specific anatomical
configurations, the effect of the uncertainty in boundary definition should be considered, particularly if
the objective is to extract quantitative measures of the local haemodynamics.

Taking an example of a bypass graft configuration, we examine the effects of image threshold, surface
smoothing and semi-idealization on the modelled geometry and the resulting flow. Procedures for recon-
struction from medical images are outlined and applied with different parameter values within the image
uncertainty range to create alternative models from the same data set.

Methods to characterize the flow structure and wall shear stress (WSS) are introduced and used to
provide quantitative comparison of the different haemodynamic environments associated with the varying
model geometries. Comparable effects on the WSS distribution are found to occur with progressively
increased surface smoothing and semi-idealization of the geometry by elliptical section fitting. Significant
differences in WSS correspond to different threshold choices. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most cardiovascular diseases are associated with an abnormal biological response caused by
unusual haemodynamic conditions [1]. One manifestation of cardiovascular disease is in the periph-
eral arteries, termed peripheral arterial disease (PAD) [2]. PAD arises through atherogenesis,
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affecting a large number of people in the western world. It may manifest itself as intermittent
claudication but may lead more alarmingly to amputation or even mortality [3].

It has been postulated since the work of [4] that atheroma in man is predisposed to occur in
regions of low wall shear stress (WSS), while being inhibited or retarded in regions of high WSS.
Furthermore, most intimal thickening is found in regions where the average WSS is less than 1.0 Pa
(10dynes/cm2) [1]. On the other hand, an upper limit to the safe value of WSS is proposed as
37.9 Pa [5] which is physiologically difficult to achieve. Other measures related to the WSS (e.g.
the oscillatory shear index) have been studied, and whereas there is a considerable discussion as
to which measure correlates best with disease occurrence, it is generally accepted that low values
of WSS are undesirable [6, 7]. In this work the WSS will be taken as the primary measure of the
vessel haemodynamics and used to assess the sensitivity of the computed flow to the geometric
definition.

The curvature and branching of arteries means that a non-uniform distribution of WSS is
inevitable, but at any location, the degree and pattern of non-uniformity depends on both global
and local features of the specific flow conduit topology. Furthermore, for any specific anatomical
region, the relevant conduit geometry varies significantly from one person to the next, in normal
let alone pathological subjects, with corresponding implications for the haemodynamic conditions.
This is discussed by Younis et al. [8], who considered inter-individual variations in flow and wall
mechanics in the region of the carotid artery bifurcation. The issue of how to classify topological
variations in arterial anatomy and the consequences for flow is a topic that is as yet hardly
explored. Apart from natural differences between individuals, variations in geometry produced
through surgical intervention may also have profound consequences; in the context of bypass
grafts, Giordana et al. [9, 10] employ the mean orientation angles of principal vascular segments
at an anastomosis as a global measure, and the respective cross-sectional area variations as local
measures in describing different bypass configurations.

The variation in arterial haemodynamics consequent on anatomical variations thus calls for
modelling to be patient specific. Tomographic imaging in vivo has provided an essential enabling
step, and modelling procedures in which the arterial geometry is determined are reviewed in
[11, 12]. Several detailed expositions of particular techniques exist, one such is the work of Antiga
et al. [13]; this work also highlights the need for user intervention in defining the bounding
geometry.

Despite the growing focus on patient-specific studies, little attempt has yet been made to quantify
the modelling uncertainty. Some attention has been given to this topic, with Löhner et al. [12]
raising the issue; however, they do not present quantitative results. A sensitivity analysis of flow
in cerebral aneurisms was performed by Cebral et al. [14], revealing the strong influence of the
geometry on the flow. Their findings serve to emphasize the need to investigate solution sensitivity
in the presence of modelling uncertainty.

In general, errors and uncertainty in modelling the haemodynamics from in vivo-acquired data
can be categorized according to where they appear in the following four stages: (1) errors in
the biophysical basis of the complete model (for example, neglect of phenomena such as wall
compliance and complex blood rheology); (2) in vivo errors in the measurement data, including
systematic errors such as image acquisition distortions and inflow rate errors (for example, due to
incorrect Doppler ultrasound positioning), and errors in other data required as parameter values
for the numerical models; (3) the propagation of second-stage errors by the transformation of
measured data to build a model, including errors in the transformation procedures themselves,
(with both forms of error occurring in the reconstruction of geometry from medical images);
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and (4) errors in numerical solution. Although the overall error is compounded in a non-linear
manner by each of the above components, it is useful to examine how they affect the solution
individually.

In this work, flow solutions are obtained under restrictive assumptions (laminar flow of a
Newtonian fluid and without fluid–structure interaction), for which the numerical procedures used
are well validated; errors at the fourth stage are thus not considered here. Examples of work
that addresses systematic errors in the second stage are [15] in which image artefacts due to
flow features are investigated; Steinman [11] addresses the third stage. Errors in defining the
biophysical basis of models at the first stage are more difficult to quantify. One approach is to
compare results obtained from simple models, with those in which some assumptions are relaxed,
for example, where wall motion is allowed [8]. Clearly, it is desirable to compare modelled
results with detailed in vivo flow measurements, although the capability of current combined
non-invasive measurement and imaging techniques presently limits the availability of such
data.

Here we consider only the effects of errors during the third stage, specifically the consequences
of uncertainty in geometric definition arising through the reconstruction process. Although the
image quality may be variable, it is assumed to be devoid of distortion artefacts; likewise we
ignore errors in specifying the inflow boundary conditions. Ascribing greater precedence to errors
in geometry than errors in specifying the inflow conditions appears to be justified for initial work
such as this. For example, the study of flow in a human right coronary artery of Meyers et al.
[16] found the inflow conditions to be of secondary importance to the geometry. As the flow
must respond both to continuous changes in geometry, and to viscous diffusion from the wall,
inflow effects are bound to diminish with distance so that finding is not unexpected. Conversely,
over short distances determination of the velocity profile at inflow is essential, whilst for unsteady
simulations the pulse waveform must be well specified.

Errors in the reconstruction procedure are caused predominantly by noise and artefacts asso-
ciated with imaging errors [17–19]. For example, magnetic resonance (MR) imaging of vascular
geometries is gaining popularity, but is often subject to artefacts such as those shown in Figure 1.
Even in the absence of such artefacts, different automatic medical image segmentation and virtual
model reconstruction schemes also introduce variability in the geometry.

Previous studies have mostly been based on simple, quasi-circular vessels, but they show that
artefacts in the reconstruction can bring about variations in the geometry that may lead to different
conclusions regarding the haemodynamic environment. Smoothing of the geometry has been found
to be associated with a reduction of the effects of these artefacts. However, the extent of smoothing
that should be performed and the degree of geometric alteration produced by smoothing has not
generally been considered.

There is therefore a lack of information on the impact of geometric differences incurred in
the reconstruction procedure on the resultant flow solution and it is this aspect of the sensitivity
analysis that we will consider in this work. How to quantify these and thus obtain a measure of the
uncertainty when performing a patient-specific study is clearly desirable. One possible approach
to determine the sensitivity of the flow would be to formulate a set of variables which define the
perturbations to the boundary conditions; a comprehensive assessment of the probabilistic range
of flow outcomes for a pre-supposed distribution of perturbation parameters could in principle be
determined. However, before undertaking such computationally intensive studies, we consider it
sensible to perform a limited investigation, in order to: indicate appropriate ranges of parameter
values, determine the consequent degree of variation in the flow, and explore means to assess the
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Figure 1. Examples of artefacts in MR imaging for the bypass graft geometry used in this work.
(a) Maximum intensity projection of the anastomosis. The arrow indicates a proximal vessel disappearing
in the proximal direction. (b) Ghosting: the anastomosis is evident in the lowest of the encircled areas;

however, repetitions or ghosts can be seen in the other encircled areas.

variation in the flow solution. The aim of this work is thus to take a representative example of
an arterial geometry which commonly poses problems in image reconstruction, and to explore the
above issues using this as a test case. Specifically, the issues addressed are sensitivity to smoothing,
to idealization and to medical image thresholding.

The geometry studied in this work is an end-to-side anastomosis performed using the tunnelling
technique. The anastomosis was below-knee and popliteal, the graft conduit was a long saphenous
vein. We consider as a data set a single MR image stack acquired using a 2D time-of-flight scanning
sequence with 0.25mm in plane pixel spacing, 1.5mm slice spacing and 1.5mm slice thickness.
For further information on the patient-specific data, see [9, 10, 20].

We consider two related arterial geometries, reconstructed using different constant threshold
choices. We also consider the effects of surface smoothing and geometry idealization by fitting
elliptical cross sections to a third geometry, reconstructed manually by an experienced user. The
geometric variation is thus confined to the small-scale features brought about by these uncertainties,
whilst the global features of the geometry are invariant.

The outline of the paper is as follows. Section 2 presents: the virtual model reconstruction
from the MR image stack, segmentation criteria, which are based on a user-defined choice and
variations on automatic procedures, and interpolation using an implicit function formulation to
give a continuous surface. Section 3 discusses a skeletonization procedure that permits the char-
acterization of the geometry of the bypass graft using the angles subtended by the best line fit to
the skeleton branches, and their cross-sectional area variation. Different smoothing procedures are
discussed in Section 4 based on three different requirements: firstly, smoothing the skeletons to
obtain smoothly varying tangents; secondly, initial smoothing of the interpolated surface to reduce
the artefacts in the reconstruction procedure; thirdly, subsequent smoothing of the surface to reduce
topological detail. Section 5 describes an idealization of the geometry by fitting elliptical sections
to the segmented contours of the image stack that will be used to compare topological details and
sensitivity to the flow. Section 6 summarizes the different variations to the geometry and their
effect on WSS. Finally, conclusions are given in Section 7.
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2. GEOMETRY RECONSTRUCTION AND IMAGE THRESHOLD

2.1. Image segmentation and effects on threshold

Initial processing of the images involves a maximum intensity projection of the image stack and
selection of the region of interest (ROI). Subsequent processing is confined to the ROI, reducing
the computing cost. The contrast-to-noise ratio (CNR) can be used to help quantify the goodness
of the image quality and is used as an initial measure of the possible errors associated with the
reconstruction of the virtual models. It is defined as

CNR= SROI−SST
�NOISE

(1)

where SROI and SST are the signal intensities (or mean square amplitudes) in the ROI and the
surrounding tissue (ST), respectively, and �NOISE is the standard deviation of the signal intensities
of the surrounding ROI background [21]. For the image stack used here CNR=1.9 which can be
considered to be good, i.e. the noise level in the image is low. The grey-scale pixel intensity levels
of the image stack in the ROI are then normalized to span the range (0,255).

Two thresholding techniques will be considered: constant threshold selection over the image
stack and the region growing method.

Choosing a threshold of constant grey-scale level for an image is a simple yet effective method
to delineate a feature. Assuming that there is a clean distinction between signal intensities internal
and external to the conduit, the edge pixels defining the internal vessel boundary are identified by
this threshold. This set of pixels provides the initial definition of the surface of the flow passage
that we will reconstruct numerically to form a computer model.

The region growing method of segmentation used here works by gradually decreasing the
choice of seed point grey-scale threshold until the point where the segmented lumen area suddenly
increases.

Here three different contour stacks are obtained from the medical images by using different
thresholding criteria. The first set of contours was produced based on an experienced user’s choice
of the threshold level that should be chosen for each medical image individually. This set of
contours will be referred to as geometry GU and will be discussed later. Two further geometries G1
and G2 were obtained by choosing constant threshold values of T1=50 and T2=65, respectively,
in the normalized grey scale. The mean distance between the two reconstructed geometries G1
and G2 is less than 0.5 pixels which is within user uncertainty bounds for segmentation (see
Figure 2). The values of T1 and T2 were guided by considering both a region growing method and
constant threshold choices. The region growing method yielded a mean value of 55.7 on the grey
scale. The constant threshold value over the stack which yields the smallest variation in geometry
with respect to grey-scale threshold level choice was found to be 60.4. This latter approach was
performed by segmenting the image stack for a range of thresholds and describing the smallest
variation in geometry as the mean closest distance between the closed curves stack. A 3% variation
in the approximate mean of these two values yielded T1 and T2 and represents a realistic range of
deviations from the true geometry, being neither extreme nor unreasonable segmentation.

2.2. Surface interpolation using implicit functions

As part of the reconstruction procedure, we require to interpolate the stack of contours obtained from
medical image segmentation to obtain a continuous surface. The proposed method for interpolating
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Figure 2. Geometries (a) G1 and (b) G2 obtained from segmenting the image stack with constant
thresholds T1 and T2, respectively. (c) Distance map between the surfaces of G1 and G2 (scale

corresponds to distance in pixels).

a surface through the contour stack is described in previous work [20, 22] and we only outline the
procedure.

The geometry is defined as the zero-level iso-surface of an implicit function f (x, y, z). This
is done by setting f (x, y, z)=0 on equally sampled points of the closed contour stack obtained
from the medical images, known as on-surface constraints. A gradient is formed in the implicit
function by introducing further constraints with negative values inside the curves at a constant
close distance normal to the curve, known as off-surface constraints where f (x, y, z) �=0. A regular
spacing of constraints reduces the computational cost to solve the system in Equation (3) [23].
Typically, a larger number of on-surface constraints are used to ensure an accurate representation
of the surface.

Radial basis functions [24–26] are used to uniquely interpolate the constraints. If we consider a
set of n constraints in R3 given by xi =(xi , yi , zi ); i=1, . . . ,n, where each constraint has a value
of hi such that f (xi )=hi , then the implicit function can be expressed as

f (xi )= P(xi )+
n∑
j=1

c j�(xi −x j ) (2)

where �(xi −x j ) is the radial basis function and c j is a set of coefficients. P(xi ) is a polynomial
that accounts for the linear and constant portions of f and can be omitted for large n [27]. This
can be expressed as a linear system of algebraic equations:

Ac=h (3)
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where Ai j =�(xi −x j ) is a non-singular n×n matrix. From [9, 10, 25] the choice of the radial
basis function is

�(xi −x j )=|xi −x j |3 (4)

where |·| denotes the Euclidean norm.
The linear system is solved using the generalized minimal residual method. The number of

constraints typically used in this work is of the order of 30 000. We introduce non-zero values on
the diagonal of A to improve the computational time, which is equivalent to approximating the
implicit function to pass close to the constraints to produce a smooth interpolation in the presence
of noise [28]. Typical values for the diagonal terms of A are of the order of 10−3 pixels.

The extraction of the zero-level iso-surface is accomplished by using the marching cubes method
to obtain an initial triangulation. The marching cubes method samples the value of the implicit
function at the vertices of a lattice of cubes containing the geometry. Linear interpolation on the
cube sides allows identification of the surface and hence meshing. The poligonizer algorithm used
is implemented in [29] and it is based on the work of Bloomenthal [30].

3. TOPOLOGY CHARACTERIZATION VIA SKELETONIZATION

In order to assess differences in reconstructed geometries and their effect on the flow, we require
a means to characterize the geometry. For example, such parameters include: cross-sectional area
variation, average diameter of branches, approximate anastomosis diameter and angles between
skeleton branches. Medial lines are used in this work as a means of representing the topology in
a compact and quantifiable way that allows these measures to be calculated accurately.

The notion of thinning or skeletonization to yield a medial line or skeleton was introduced by
Blum [31]. The skeleton is the supporting structure to the geometry which is the locus of the
centres of the maximally inscribed spheres inside the object. The skeleton may be obtained from
a binary 3D object by the use of a fast 6-subiteration algorithm [32].

The method used is one of a number of algorithms based on a binary representation of the
volume; other approaches are discussed in [33]. The 3D binary digital picture of the object is
defined in the 3D digital space Z3 such that each voxel is adjacent to 26 voxels. Each voxel inside
the object is assigned a value of 1 while all the remaining voxels are assigned a value of 0. The
thinning of the voxels to obtain the skeleton is iterative and removes the voxels with value 1 by
applying a set of masks as presented in [32]. For the geometries used, the number of iterations
was below 20. Various stages of the iterative process are illustrated in Figure 3.

The skeleton points obtained can be clustered into paths by identifying individual points and
their adjacent neighbours. The points can be identified as belonging to one of three categories: a
line-end point that has exactly one point adjacent to it, a line point with exactly two points adjacent
to it and a cross-point that has more than two points adjacent to it. Using this classification it is
possible, by simply exhaustively marching in all possible directions and ensuring no repetition of
paths, to obtain paths starting at a line-end point or a cross-point and ending at a line-end point
or a cross-point connected by line points.

An anastomosis consists essentially of three conduits and its skeleton is formed by three branches
meeting at one point. Small spurious branches may appear in the skeletonization process. These
can be due to local features on the surface of the topology as well as the discretization of the
space in R3 to yield the digital space in Z3. Automatic clustering of the points into paths allows
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Figure 3. Skeletonization of the peripheral bypass graft in Z3: (a) initial binary image; (b) after 5 iterations;
(c) after 10 iterations; and (d) after 17 iterations when the skeletonization process has terminated.

Figure 4. Skeleton of the geometry: (a) cloud of disorganized points obtained from the thinning process;
(b) final smooth skeleton; detail of pixelated skeleton showing spurious branches and final smoothed and

pruned skeleton for (c) proximal vessel and (d) anastomosis region.

spurious paths to be identified and removed, which is known as pruning. In the graft geometry,
pruning leaves the three main skeletons corresponding to the distal, proximal and bypass graft
vessels (Figure 4).

The representation of the skeleton obtained from this procedure is jagged since it is derived
from the thinning of voxels and hence reflects the discrete nature of the image stack. Smoothing of
the skeletons is therefore required and can be performed by the algorithms described in Section 4,
constraining the line-end points and the cross-point not to move.
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Figure 5. (a) Cross-sectional area for geometries G1, G2 (created using different constant thresholds T1
and T2 on the image stack) and their smoothed geometries G100

1 and G100
2 . The location of the sections

are indicated in (b), taken at equal intervals and perpendicular to the z-axis. The graft (G), proximal (P)
and distal (D) vessels are indicated in (b).

Having obtained the smoothed skeletons belonging to the three conduits, we can now extract
measures to characterize the geometry. Once the average cross-sectional areas of each branch are
calculated using the skeleton points and tangents to define the cutting planes, the average diameter
of the branches is given by

L1=2

√
AG+AD+AP

3�
(5)

where AG, AD and AP are the average cross-sectional areas of the graft, distal and proximal
branches, respectively, as illustrated in Figure 5(b). The average is performed over the entire
branch length available in the scan and we find AP=9.99, AD=12.1 and AG=16.0mm2 for the
user-segmented geometry. The second reference length L2 is defined as the distance between the
bifurcating point of the skeleton branches and the apex of the anastomosis, the location where the
graft and the proximal branches separate. The apex location is found by calculating the shortest
distance from the centroid of the distal branch exit over the surface of the graft [34]. The apex is
the location where the contours of equal distance from the exit last join before dividing into the
graft and proximal branches. The geometry reference lengths are calculated here as L1=4.0mm
and L2/L1=1.3 (L2=5.2mm).

The characteristic angles of the bifurcation of the anastomosis are defined as the minimum angles
between the best-fit lines of the branches resulting in three angles: GPA=26◦, GDA=150◦ and
PDA=172◦ which stand for graft–proximal angle, graft–distal angle and proximal–distal angle,
respectively. The planarity of the graft is characterized by the angle, �, between the graft and the
plane formed by the distal and proximal conduits. For this geometry �=1◦. It is important to note
that these angles do not change significantly with the geometries created.
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4. SURFACE SMOOTHING OF GEOMETRY

To understand the significance of small-scale geometrical features on the flow, we have applied
several degrees of smoothing to the user-defined segmentation reconstructed geometry. The small-
scale features are typically of the order of 1 pixel and are present in the regions of high curvature.

We have used three smoothing schemes: Laplacian, bi-Laplacian and projected mean curva-
ture methods to deal with three different aspects. Firstly, the Laplacian method was used in the
skeletonization procedure to obtain a smoothly varying tangent. Secondly, the bi-Laplacian is used
on the reconstructed mesh to regularize the mesh and remove artefacts in the RBF interpolation
and marching cubes procedures. Thirdly, the projected mean curvature method has been used for
subsequent smoothing, after the bi-Laplacian smoothing, to generate different idealized geometries,
as discussed in Section 6.

The smoothing of the surface is performed as follows. Let us consider a regular triangular mesh
consisting of N vertices vi =(xi , yi , zi ); i=1, . . . ,N . The neighbouring vertices to each vertex vi
in the triangulation are denoted by v j ; j =1, . . . ,mi , where mi is the number of neighbours. The
discrete Laplacian at the vertex vi is calculated as

Li =
mi∑
j=1

wi j (v j −vi ) (6)

where the weights wi j can be given by various functions [35] with the constraint that ∑mi
j=1wi j =1.

In this work we use wi j =1/mi . The Laplacian can then be interpreted as the vector moving the
node in question to the barycentre of the neighbour vertices.

The smoothing algorithm is iterative: the mesh nodes vni , where n denotes the iteration number,
are moved simultaneously to a new position

vn+1
i =vni +�Ln

i , 0���1 (7)

This form of smoothing, known as Laplacian smoothing, produces large amounts of shrinkage of
the surface. To overcome this, an inflation step is introduced as part of the smoothing:

vn+1/2
i = vni +�Ln

i

vn+1
i = vn+1/2

i +�Ln+1/2
i

(8)

where the Laplacian is recalculated at each step. If �=−� this is known as bi-Laplacian smoothing.
An alternative smoothing method is obtained by considering the curvature �i in the normal

direction ni at vertex vi , calculated using the formula proposed in [36] and given by

−jini = 1

4Ai

mi∑
j=1

(cot� j +cot	 j )(v j −vi ) (9)

where Ai is the area of the triangles surrounding node vi and � j and 	 j are the angles opposite to
side i j in the triangles sharing this side. The curvature normal can be normalized using the radius
of an equivalent circle of area Ai and is defined as Ki =−jini√Ai�. If Ki is used instead of Li
in Equation (7) it tends to cluster the points, distorting the mesh. Mesh regularization is obtained
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Figure 6. Geometry G1, seen as white, has been smoothed using 100 iterations of the projected
mean curvature flow method and yields the red surface in (a). Subsequent inflation by movement
along the surface normal by the mean closest distance between the surfaces yields geometry

G100
U coloured in dark grey in (b).

by projecting the normalized curvature normal onto the Laplacian barycentre vector and Equation
(7) now becomes

vn+1
i =vni +�(Ln

i ·Kn
i )

Ln
i

|Ln
i |

(10)

yielding the so-called projected mean curvature flow smoothing [37].
The above schemes act as low-pass filters to curvature with no compensation of the removed

higher frequencies. The result is that the surface will shrink with increased number of smoothing
iterations. To overcome this the surfaces are re-inflated after the smoothing has been terminated.
The inflation is performed iteratively by moving each vertex by the average closest distance between
the geometries along the local normal, and is found to be effective even with severe shrinking as
can be seen in Figure 6. The inflation performed in this way does not guarantee that the volume
is maintained but does minimize the distance between the surfaces. Maintaining the fit of the
smoothed surfaces to the original surface is of importance here in order to avoid large anatomical
changes and maintain the cross-sectional area.
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Figure 7. Comparison of geometries defined by: (a) user segmentation (GU ) and (b) geometry idealized
by elliptical fitting (GE ). Effect of smoothing on geometry GU is shown in (c) for 20 iterations of the

projected mean curvature flow to obtain G20
U and (d) 100 iterations to yield G100

U .

All geometries were obtained directly from the reconstructed geometry by using 50 bi-Laplacian
iterations with �=−�=0.6. The mean closest distance due to this smoothing is of the order of
0.01 pixels for all the geometries. This does not alter the flow solution significantly.

Further smoothing iterations are performed on these geometries using the projected mean curva-
ture algorithm with �=0.1 followed by a re-inflation once the smoothing is terminated.

Figure 7 shows a set of successively smoothed geometries, progressing from what could be
described as slight retouches to such a high degree of smoothing so as to cause significant
differences from the original geometry, leading to a form of idealized geometry. For comparison, an
idealized geometry obtained by ellipse cross-section fitting, which will be discussed in Section 5,
is also shown in this figure.

5. ELLIPTICAL SECTION FITTING

An alternative approach to reconstructing the geometry is to fit elliptical sections to the curves
segmented from the MR images. This reduces the complexity of the anastomosis geometry. Apart
from providing a means to idealize the geometry, the technique of reconstruction using elliptical
sections is also used when more limited in vivo imaging data are available, for example, in multi-
planar angiography. The result is a stack of ellipses that best represents the segmented contour
stack obtained from the medical images. An implicit function is then interpolated between the
slices to reconstruct the surface.

The ellipses are chosen individually for each contour so that they lie in the same plane, have
the same cross-sectional area and the centre of the ellipse coincides with the centre of the closed
contour section. This is performed using the proper orthogonal decomposition method. Each closed
contour is re-sampled to have equally spaced points p′

i =[x ′
i , y

′
i , z

′
i ]T for i=1, . . . ,n. These points
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Figure 8. Location of sections taken to compare geometries GU and GE . The slices are ordered from (1)
to (5) according to increasing z coordinates.

are mean subtracted to remove the bias such that pi =p′
i −(1/n)

∑n
j=1p

′
j and then assembled to

form a 3×n matrix P. The covariance matrix is given by

C= (PPT)

n
(11)

The unit eigenvector corresponding to the largest eigenvalue of C is the major axis of the ellipse,
the unit eigenvector corresponding to the second largest eigenvalue is the minor axis of the ellipse
while the last unit eigenvector is the normal to the plane containing the ellipse and its eigenvalue
has zero magnitude.

A few slices have been taken from the ellipse fit geometry and compared with that of its
reference geometry in Figure 8, which shows the reduction in complexity of the cross sections
whilst preserving their area.

6. ANALYSIS OF THE EFFECTS OF SHAPE VARIATION ON FLOW

6.1. Flow conditions and methodology

We are particularly interested in the flow distribution in the regions of the heel, toe and floor of the
anastomosis, highlighted in Figure 10, since these are regions of low WSS and preferential sites
for the development of intimal hyperplasia [38]. Intimal hyperplasia is manifested by an abnormal
change in the cellular structure of the vascular wall; an over-proliferation of the smooth muscle
cells occurs and the interior passageway or lumen available to the flow is progressively reduced.
Eventually, the anastomosis becomes no longer patent and the graft fails.

All the results presented are for the anastomosis which is taken to be the region within a distance
L2 from the beginning of each branch.

The mean velocity was measured by Doppler ultrasound. Blood is assumed to be an incom-
pressible Newtonian fluid. The Reynolds number based on the bypass conduit inflow diameter was
found to be Re=135, low enough for the flow to be considered laminar, with a 40% proximal and
60% distal outflow split. The Womersley number is �≈3 which justifies assuming a steady flow.
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Figure 9. Location and sections of the mesh volume used to test for mesh convergence. The meshes
consist of approximately 1.7 and 4.3 million cells.

The inflow boundary condition is taken to be a Poiseuille flow velocity profile and the simulations
are performed using Fluent 6.0.12 second-order, segregated, SIMPLE method flow solver [39].

A volume mesh with eight prismatic elements across the boundary layer is generated using
TGrid [40]. The height of the prismatic elements nearest to the wall is 5.5×10−5m corresponding
to 2.3% of the bypass inflow radius. The unstructured mesh contains approximately 1.7 million
cells. The spatial resolution of this mesh was considered to be fine enough for mesh convergence
since a finer mesh with 4.3 million cells and 12 prismatic boundary layer elements (with initial
element height of 4.3×10−5m corresponding to a 1.8% of the bypass inflow radius), see Figure 9,
produced a relative difference in WSS smaller than 0.01%.

To summarize, a set of geometries is formed from the same medical image stack to represent
plausible uncertainty and variability in the segmentation and reconstruction schemes. The mean
segmentation variability in the reconstructed geometries is below 0.5 pixels. Two initial geometries,
referred to as G1 and G2, are obtained by reconstructing the medical image stack using constant
threshold values of T1 and T2, respectively. A further geometry GU is obtained from a user-defined
segmentation of the stack and its idealization by fitting elliptical section is called GE . Only GU
is subjected to a range of smoothing intensities using the projected mean curvature method to
observe the trend from small topological variations, corresponding to few smoothing iterations,
to larger changes which simplify the geometry greatly when the number of iterations increases.
The number of smoothing iterations performed are 10, 20, 60, 80 and 100. The nomenclature
for the smoothed geometries is to place the number of smoothing iterations as a superscript so
that, for example, G20

U denotes geometry GU , the user-defined segmentation, after 20 iterations of
smoothing. All these geometries were analysed but, for simplicity, only the images of GU , G20

U ,
G100

U , GE , G1 and G2 are shown as indicative examples.
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In comparing the flow in the different geometries, we examine the geometric variation in terms
of curvature change and the closest distance between the different model surfaces. The value of
the closest distances are normalized by the pixel size and the WSS are normalized by the value
of WSS at the graft inlet. We utilize as a mapping a point-to-surface correspondence based on the
closest distance from the reference surface to the target surface, which defines the corresponding
closest location. A measure of the reduction of the small-scale features is the reduction in mean
curvature of the surface, calculated using Equation (9), with respect to the reference geometry.
Geometric deviations between surfaces are characterized directly by the closest distance map. By
mapping the WSS and curvature (hence surface properties) of an interrogation geometry onto the
reference geometry and calculating the distance between the surfaces, a measure of the change of
geometry and its effect on the flow can be obtained.

6.2. Effects of surface smoothing on the flow

Here we consider the effect of smoothing on geometry GU which is obtained from the user-defined
segmentation. The geometries include G20

U and G100
U which are obtained from smoothing using 20

and 100 iterations, respectively, and GE which is obtained by fitting elliptical cross sections.
We will first examine the results of progressive smoothing applied to geometry GU , from ‘mild’

to ‘severe’ smoothing.
Most of the reduction in mean curvature occurs in the first few iterations. Changes in the

geometry in the early smoothing iterations correspond to reduction of small-scale features while
the later iterations correspond to the gross removal of features and hence a noticeable simplification
in the detail of the surface geometry. Small-scale alterations to the geometry tend to be in the
locations of high curvature only and the effect is typically not confined to where the movement
has occurred but propagates downstream and hence there is less direct correlation. When a large
number of iterations is performed, some of the lower curvature regions are also affected leading to
an idealization and topological change on a larger scale. It is evident that the changes in GU , due
to mild smoothing to obtain G20

U , are more closely linked to the small-scale features. It is only in
applying severe smoothing to obtain G100

U that the effects of idealization start to become readily
noticeable. This can be observed in Figure 7.

Sensitive indicators of the change in flow structure with geometry variations are the distribution
of WSS and corresponding surface shear lines. The surface shear lines are aligned with the
tangential component of the viscous traction exerted by the flow on the wall. They indicate the
limit in the direction of the flow velocity vector as the wall is approached, and are useful in
highlighting zones of attachment and separation.

Comparing the surface shear lines for different degrees of smoothing, the results shown in
Figure 10 demonstrate that the reduction in small-scale geometric irregularity results in a more
coherent pattern of shear lines. Likewise, the contour plot of streamwise velocity at a cross section
through the anastomosis shows how the velocity distribution is effectively simplified. Clearly, G100

U
and GE show similar features which can be thought of as alternative topological simplifications
due to smoothing in one case and elliptical fitting in the other.

In terms of detailed haemodynamics, the regions of separation at the toe of the anastomosis
and the stagnation point due to the impact of the jet coming from the graft at the floor are clearly
evident. A small separation region at the heel in GU and G20

U can also be observed, but this
feature is removed in the case of high smoothing, G100

U and in the idealized geometry GE . The
location of the stagnation point on the floor of the anastomosis is seen not to change significantly
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Figure 10. Influence of geometric variations on wall shear stress magnitude (Pa), surface
shear lines and the z-component velocity (m/s): (a) GU , (b) G20

U , (c) G100
U , and (d) GE .

The cross section is section (1) in Figure 8.

for any of the geometries: with respect to GU the change in location is approximately 0.5 pixels
for G20

U , 1.7 pixels for G100
U and 2.1 pixels for GE . This indicates that the stenosis in the graft

is a dominating feature in directing the graft flow into the anastomosis. The separation region at
the toe does not appear to change significantly in spatial extent, although the strength of the flow
reversal appears to increase slightly (from the spacing and orientation of the shear lines). There
is also an increasingly noticeable swirling motion in this region as the geometry is progressively
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Figure 11. Geometries (a) GU , (b) G100
U with wall shear stress shading, black lines represent curvature

iso-contours. The scale has been normalised to have the same range, from minimum to maximum, for
all parameters. Note that (i) correspondence between extrema of curvature and WSS is noticeable only
before the stenosis and (ii) smoothing the geometry produces a more gradual change in the WSS, but

downstream of the stenosis the extrema in curvature and WSS are poorly correlated.

smoothed or simplified, where the fluid leaves the surface. However, this has been observed to be
of small intensity using the vortex structure identification method described in [41].

The correspondence between the WSS and the small-scale features of the geometry is observed
using the curvature as an indicator, as seen in Figure 11. It has been found that for geometry
GU there are smaller and more localized pockets of higher curvature and also of WSS while
for the smoothed case G100

U the changes in curvature and WSS are more gradual. The impact of
smoothing the geometry is noticeable on the WSS. However, the correspondence of the regions of
curvature and WSS is not evident after the stenosis but more so in the graft before the stenosis,
especially for GU . Upstream of the stenosis the flow is attached and there is strong correspondence
between the curvature and WSS, whereas the flow recirculation in the anastomosis downstream
of the stenosis destroys this correspondence. Therefore, it is evident that the stenosis dictates the
gross flow behaviour and the correspondence between the WSS and the curvature is not localized
after the stenosis.

Table I and Figure 12 show that the changes in average normalized WSS and average normalized
closest distance are progressively larger with progressively higher degrees of smoothing, but their
correspondence is not as linear as might initially appear in Table II. The surface movement due
to the smoothing occurs initially at the regions of higher curvature. However, further iterations
alter the larger scale features and hence the overall surface movement is no longer confined to the
locations of higher curvature.
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Table I. Variations, measured as area-weighted averages over the geometry surfaces and performed only
in the anastomosis region of interest given by considering only L2 of the branch lengths.

Curvature Normalized WSS Closest distance Area change under
Geometry change (%) difference (%) (% pixel) 1.0 Pa (%)

GU –G20
U 8.4 11.8 0.8 1.3

GU –G100
U 12.9 23.7 3.4 3.0

GU –GE 14.3 48.3 4.6 4.5

G1–G2 3.6 55.6 49.2 9.8

Figure 12. Average normalized wall shear stress difference (%) and average closest distance (% pixel) for
the different intensities of smoothing due to increased number of iterations performed.

The maximum and minimum variation of WSS along the conduits decrease with increased
smoothing, as seen in Figures 13 and 14, indicating that the flow is more uniform. The small-
scale features that introduce higher curvature also increase the peaks of the WSS whilst reducing
the average value of WSS. The maximum and minimum WSS variations for GE are similar in
magnitude to those for G100

U .
The Pearson correlation coefficient r is a simple statistical tool which gives a measure of the

tendency of the variables to increase or decrease together. For two variables x and y, corresponding
to the normalized WSS change and the normalized closest distance between the two surfaces,
respectively, evaluating the variables at n surface points yielding n data points xi and yi ; i=1, . . . ,n.
The Pearson coefficient is then defined as

r = (
∑n

i=1(xi −x)(yi − y))2∑n
i=1(xi −x)2

∑n
i=1(yi − y)2

= cov(x, y)

�x�y
(12)

where x and y denote the mean values, �x and �y denote the standard deviations, and cov(x, y)
denotes the covariance. The value of r is such that |r |<1. The results of the correlation are given
in Table II and variables are considered to be strongly correlated if |r | is close to 1. The results of
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Table II. Comparison of geometry and WSS: comparing the closest distance
moved (y) with the WSS change (x) for corresponding points by using the
Pearson correlation coefficient r and fitting a least-squares line of best fit

through data such that y=a+bx .

Geometry r a b

GU –G20
U 0.44 0.02 0.13

GU –G100
U 0.44 0.08 0.20

GU –GE 0.38 0.04 0.18

G1–G2 0.34 0.43 0.11

Figure 13. (a) Maximum and (b) minimum wall shear stress for geometries GU and G100
U in the location

of the slices seen in Figure 5. The graft, proximal and distal conduits are divided at z=3.5 so that the
smaller WSS values with large values of z are in the proximal branch.

the progressively more intensive smoothing cases, ranging from 10 iterations to 100 iterations in
the smoothing, show the correlation to increase from r =0.42 when comparing GU with G10

U to
r =0.44 when comparing GU with G100

U . Hence, there is not a significant change with smoothing.
For these values of r the correlation is considered to be moderate.

As expected, the correlation of the distance moved with the WSS difference is not very large
since an upstream change will have a downstream effect on the flow. The correlation coefficient
appears to be smaller in the less smoothed cases also because the data are clustered in a small
region due to small changes in both the WSS and distance; hence, not obtaining a large spread
which would allow for a better correlation. A better correlation for the idealization by smoothing
than for the ellipse fitting is noticeable.

6.3. Effects of threshold uncertainty in segmentation on the flow

We now consider geometries G1 and G2 created by constant threshold segmentation. When
comparing G1 with G2 we must remember that the mass flow in each case is different since the
Reynolds number has been maintained instead of the flow rate. Since we apply fully developed
Poiseuille velocity profile at inflow and the diameters of the graft inflow are 4.83 and 4.70mm
for G1 and G2, respectively, we find that the WSS at inlet are 0.727 and 0.765 Pa, respectively,
which would imply an increase of the straight pipe WSS by 5.2%. On comparing the WSS patterns
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Figure 14. Cumulative area distribution for the wall shear stress. The effect of the different thresholding,
importantly, is seen to have decreased the region of WSS<0.5Pa between geometries G1 and G2.
Smoothing the geometry GU tends to reduce the peaks of WSS as seen in Figure 13 while we see here

and from Table I that the mean WSS increases.

Figure 15. Wall shear stress magnitude (Pa), surface shear lines and the z-component velocity (m/s)
section for geometries (a) G1 and (b) G2. The section location is the same as section (1) in Figure 8.

therefore, we need to keep this offset in mind. However, from observing the average positive WSS
difference in Table I we see that the effects are highly non-uniform and there is a 55.6% change.
This indicates that the flow does not behave linearly with respect to the cross-sectional area change
and hence we cannot expect that the results for G1 and G2 are directly scalable. Furthermore, from
the Pearson coefficient we note that the correlation in WSS change and closest distance between
G1 and G2 is weak even though the average closest distance is under 0.5 pixels.

As summarized in Table I, the change in area with WSS<1Pa can be as high as 10%. More
emphatically, as indicated by Figure 14, the region with WSS<0.5Pa varies by nearly 50%
between the different reconstructed geometries. It should be noted that for this patient over 50%
of the bypass geometry had a WSS<1Pa and in fact postoperative re-stenosis occurred resulting
in re-operation to insert a jump graft, which also failed.
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Observing once again the surface shear lines for the WSS in Figure 15, we note that the general
flow patterns to be very similar once again with no noticeable change in the stagnation point on
the floor of the anastomosis (approximately 1.5 pixels) and the separation regions at the toe and
heel of the anastomosis.

Unlike the results in Figure 10, a further significant region of positive z-component velocity
is seen and corresponds to the flow going to the proximal vessel. This is of interest since the
user-defined thresholds lie within the range of T1 and T2 for the anastomosis and therefore GU
would be expected to show flow characteristics ranging from those seen for G1 and G2.

7. CONCLUSIONS

These results represent a preliminary investigation of the impact of uncertainties in medical imaging
reconstruction on the flow solution. Choosing as a test case the modelling of flow in a patient-
specific peripheral bypass graft anastomosis, we have determined the likely range of uncertainty
in the geometric boundary definition. Methods to assess the quantitative effect of such variations
on the computed haemodynamics have been presented. The information derived and procedures
described should be of benefit for further studies to incorporate uncertainty in evaluating the
haemodynamics of different patient-specific geometries.

We found that, on average, artefacts in the MR image stack, processed by different segmentation
and reconstruction methods to obtain the virtual model, yield small variations in the geometry (of
the order of 0.5 pixels), but local changes can amount to several pixels as can be seen in Figure
2(c). Such changes were observed to occur in the vicinity of stenoses, which are regions of high
sensitivity. As a consequence, the WSS distribution showed significant variations.

The mean point-wise change in the WSS resulting from different segmentations obtained with
constant thresholds was found to be 55.6% (Table I), while the expected change due to the increased
mass flow would only be 5.2%, based on the inflow WSS. Furthermore, it was demonstrated that
the closest distance between corresponding points on different model surfaces cannot be correlated
directly with the local WSS changes. As shown in Table II, the closest point correlation of WSS
difference is r =0.44 whether small (20 iterations) or significant (100 iterations) smoothing is
applied while r <0.38 for different constant threshold choices.

The work clearly indicates that the mean distance cannot be used exclusively as an indicative
parameter in assessing the confidence bounds to the reconstruction process. However, it can, for
now, be used together with the nominal solution to indicate the degree of sensitivity associated with
the reconstruction process. This is unsurprising, given that changes to a stenosis, for example, will
have significant effects downstream, but it nevertheless highlights the non-local correspondence
between boundary displacement and flow consequence.

The results indicate that mild smoothing results in the simplification of small topological features,
producing a more coherent pattern of shear lines (in which small irregularities are removed). By
contrast, severe smoothing leads to geometrical changes which are dispersed over to the large
scales tending towards geometrical idealization with correspondingly large alterations in WSS.
These flow features are similar to those obtained fitting elliptical sections.

Overall, this work has shown the need to consider the effect of parameter uncertainty in
attempting to derive quantitative measures from patient-specific studies. Particular care will be
needed if the results of computational modelling are to be used in attempting to relate the haemo-
dynamic environment to the vascular biology, or in determining patient-specific prognoses.
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There is merit and need to perform a benchmark study, for example, comparing MR-acquired
data with that obtained by very high definition computed tomography (CT) or with realistic in vitro
models produced by resin casting or rapid prototyping. This would certainly help to provide more
precise error bounds for an individual case; however, it must be appreciated that MR image quality
varies from subject to subject, and clearly high definition CT validation could not be performed
on each subject. It is conceivable that the process of patient-specific MR image simulation [15]
could be used to reduce the uncertainty in determining both the conduit geometry and in relating
the computational simulation to in vivo data.

For the present, we have concentrated on existing methodologies using clinical data, to make
this work accessible to the medical community and ready to be incorporated in current clinical
studies. Routine clinical application of this work is limited by the computational fluid dynamics
run time which requires a few hours on modern 3GHz dual core workstations, while the recon-
struction processes, including the segmentation, reconstruction and characterization routines, take
just minutes.
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